Show me your nasty molecule

THE HOMEWORK

What makes it environmentally problematic?

What properties do you remember from organic and p-chem?

If any...

What is a pollutant?

What is a pollutant?

Generally, any substance introduced into the environment that adversely affects the usefulness of a resource or the health of humans, animals, or ecosystems.

What makes a substance a pollutant?

Generally, any substance introduced into the environment that adversely affects the usefulness of a resource or the health of humans, animals, or ecosystems that is persistent, and easily transportable.

Degradation (chemical)

Photolysis Hydrolysis Redox Biodegradation

Dissipation (physical) Abiotic Volatilization Partitioning

Dissipation (physical) Abiotic Volatilization Partitioning

Dissipation (physical) Biotic Partitioning

Dissipation (physical) Biotic

Partitioning Bioccumulation Bioconcentration Biomagnification

A NEVER ENDING CIRCLE

REACTIONS	AIR	WATER	SOILS	PLANTS	ANIMALS
Hydrolysis	Υ	Υ	Υ	Y	Υ
Phototransformation	Υ	Υ	Y	Y	Y
Dissociation	Y	Y	Y	Y	Y
Solubility	Y	Υ	Y	Y	Υ
Sorption	Υ	Υ	Υ	Υ	Υ
Biodegradation	Y	Υ	Υ	Υ	Υ
Metabolism	Ν	Ν	Ν	Υ	Υ
Accumulation	Ν	Ν	Υ	Ν	Ν
Bioaccumulation	Ν	Ν	Ν	Υ	Υ
Volatilization	Υ	Υ	Y	Ζ	Ν
Respiration	N	Ν	Ν	Υ	Υ
Excretion	Ν	Ν	Ν	Ν	Υ

The most toxic compound ever known to man

Dioxin

2,3,7,8-tetrachlorodibenzo[b,e][1,4]dioxin (TCDD)

has a reported LD50 of 0.045 mg of dioxin/kg of body mass for rats.

(LD50 is the concentration expected to kill half a given population.)

Byproduct of synthesis of chlorophenols

ANICAN D ENCALSION

OLYMPIC CHALLENGE Lab to work 24/7 to detect banned drugs P25 HEART-HEALTHY FAT

HEART-HEALTHY FAT Advances in synthesizing ornega-3 fatty acids P.39

Surficial TCDD Sediment Concentration-Jamaica Bay

Some compounds were better!

DDT, DDD and DDE: environmental legacy

Paul Hermann Müller won the 1948 Nobel Prize in Physiology or Medicine for his 1939 discovery of DDT as an insecticide useful in the control of malaria, yellow fever and many other insect-vector diseases.

Rappolt, RT (1973). "Use of oral DDT in three human barbiturate intoxications: hepatic enzyme induction by reciprocal detoxicants". Clin Toxicol 6 (2): 147-51

DDT, DDD and DDE: environmental legacy

- Rachel Carson (1962)
 - Silent Spring
 - DDT
 - world-wide distribution
 - accumulating in organisms

2,2-Bis(p-chlorophenyl)-1,1,1-trichloroethane

Organic Contaminants: environmental legacy

- Love Canal (1976)
 - Hooker Chemical buried wastes in canal
 - residential construction on site
 - chlorinated hydrocarbons seeping into homes, schools
 - first large-scale EPA intervention
 - led to CERCLA (Superfund)

Organic Contaminants: environmental legacy

TETRACHLOROETHYLENE

- Woburn, MA (1980s) – TCE CI CI
 - wide-spread in groundwater
 - disputed source
 - suspected to cause cancer (leukemia)
 - A Civil Action
 - Jonathan Harr (1995)

Organic Chemicals and YOU!

A = Synthetic chemical production

B = % Overweight adults, based on survey points

C = % Overweight adults, interpolated

From The Body Restoration Plan: Eliminate Chemical Calories'" and Repair Your Body's

Natural Slimming System" by Dr. Paula Baillie-Hamilton © 2003 by Dr. Paula Baillie-Hamilton 200

Organic Contaminants: how do we know we did it?

biology.queensu.ca/~pearl/taste/tpics/core.jpg

Figure 1.1 Historical records of the sales/production volumes of (a) DDT and (b) PCBs, and the similarity of these time-varying trends to the accumulation rates of these chemicals in the sediments of Lake Ontario (from Eisenreich et al., 1989).

Organic Contaminants: BOXES AND ARROWS

Organic Contaminants: BOXES AND ARROWS

compounds.

Can we evaluate every compound for every compartment???

The book is 1313 pages long!

Lessons from the past: almost everything at the same time

- Analytical capabilities
 - Low concentrations
 - Specific compounds
 - Positive identification
 - No metabolites

1	1.4 Dichlorobenzene d4	23. Nitrobenzone d5	44. Acenaphihene-d10	65. Diethylphihaiste	86. Chrysene d12
2	Pyridine	24. Nitroberzone	45. 2,4,6-Trichlorophenol	66. 4-Chiorophenyl-phenylether	87. Pyrene
3	N-Nitrosodimethylamine	25. Naphthalene-d8	48. 2,4,5 Trichlorophenai	67. 4-Nitsaniine	88. Terphenyl-d14
4	2 Picoline	26. N Ntrosopiperidine	47. 2 Fluorobiphenyl	68. Diphenylamine	89. p Dimethylaminoszobergens
5	Wethyl methanesuforate	27. Isophorone	48. 2-Chloronaphthalene	69. n-Nirosodphenylamine	90. Butybenzyl phthalate
8	2-Fuorophenci	28. 2-Nitrophenol	49. 1-Chloronaphthalene	70. Diphenyitydrazine	91. Bergojajanthracene
7.	Ethyl methanasullonate	29. 2,4 Dimethylphonol	50. 2-Nitroaniine	71. 4,6 Cinitro 2 methylphanol	92. 3,3' Dictionationaline
8	Phenol-d5	30. bis/2-Chlorcethoxy/methane	51. Dimethylphthalate	72. Phenonthrene-dt0	93. Chyrsene
. 9	Pherol	31. 2,4-Dichlorophenol	52. Acenaphiltylene	73. 2,4,6-Tribromophenal	94. bis(2-Ethylhexylphthalate
10	Anikno	32. Benzoic acid	53. 2.6 Dinitrotoluano	74. 4 Bromoshenyi phenyi ether	95. Porylene-d12
11.	bs(2-Chicrosthy)ether	33. 1,2,4 Trichlorobenzone	54. 3-Nitroaniine	75. Phonocetin	96. Di-n-octylphthalate
12	2-Chlorophenol	34. a-, a-Dimethylphenethylamine	55. Acenaphihene	76. Hexachiorobenzene	97. Berzo(b)fluoranthene
13.	1,3 Dichlorobenzene	35. Naphthaleno	55. 2,4 Dinitrophenol	77. 4 Aminobiphonyl	98. 7,12 Dimethylbonz(a)
14	1.4-Dichlorobenzene	36. 4-Chioroaniline	57. Dibenzofuran	78. Pentachicrophenoi	anthracene
15	Benzyl alcohol	37. 2,6-Dichlorophenol	58. Pentachioroberizene	79. Pentachioronitrobenzene	99. Bonzo (k) fluoranthone
15	1.2 Dichlorobenzene	38. Haxachilorobuladiene	59. 4 Nitrophenol	EO. Pronamidu	100. Benzo[a]pyrene
17	2-Methylphonol	39. N-Nihaso-di-n-butylemine	60. 2.4-Dinitrotoluone	51. Phononthreno	101. 3-Methylcholarthrene
18	bis(2-chloro-isapropy()ether	40. 4-Chloro-3-methylphenol	61. 1-Nepthylamine	62. Anthracene	102. Diberzo(a, jacridine
19	4 Methylphonol	41. 2-Nothyinaphthalone	62. 2 Naphylamine	63. Di-n-butyiphthalate	103. Dibeng(a,h)anthracene
20	Acotophenane	42. 1,2,4,5 Tetrachlorebonzone	63. 2.3,4,6 Tatrachiorophenel	64. Fluoranthene	104. Indeno (1,2,3-cd) pyrene
21	n-Nilroso-di-n-propylamine	45. Hexachilorocyclopentadiene	64. Fluorene	65. Benzidine	105. Benzo(g,h, (perviene
122	Manachinemellenen				

Detector

MSD 200*C

Same family different isomers?

- Different structure causes
 different
 - toxicity
 - reactivity
 - Partitioning
- If you are not planar or larger than 10A not that bad!
- Quantitative structure-activity relationship (QSAR) is the process by which chemical structure is quantitatively correlated with a well defined process, such as biological activity or chemical reactivity

acute toxicity (LD₅₀ for rats)

Same family different isomers?

- Different structure causes different
 - toxicity
 - reactivity
 - partitioning

degradation (hydrolysis half-life, pH 7)

Same family different isomers?

- Different structure causes different
 - toxicity
 - reactivity
 - partitioning

sorption to river sediments at pH 7

Value Engineering \rightarrow make your life easier

- Simplify to box models
 - air
 - water
 - suspended matter
 - soil and sediment
 - organisms
 - etc.
- Remember the details
 - don't simplify if simplification underestimates an important process

PUTTING YOUR NECK ON THE LINE

http://www.youtube.com/watch?v=z4lijvljpRw